Pressemitteilung

06.03.2015

Verknüpfungen innerhalb des Gehirns

Zurück zur Übersicht

Neue Erkenntnisse über das Entstehen von Nervenfaserverbindungen

Normale Gehirnentwicklung mit sichtbaren axonalen Verbindungen (links), fehlende Nervenstränge (rechts). Copyright Charité

Bei der Ausbildung von Verbindungen zwischen den Nervenzellen spielen Proteine, insbesondere das SIP1 genannte Protein, eine entscheidende Rolle. Ist es abwesend, verzögern sich Wachstum und Verzweigung der Nervenfasern. Die Folge: Krankheiten, die mit motorischen und geistigen Einschränkungen einhergehen, wie das Mowat Wilson Syndrom. Den zugrundeliegenden molekularen Mechanismus haben Wissenschaftler der CharitéUniversitätsmedizin Berlin nun weiter aufgeklärt. Die Ergebnisse der aktuellen Studie sind im Fachmagazin Neuron* veröffentlicht.

Sprache, Mathematik, Kunst, Kommunikation – diese und viele andere Leistungen ermöglicht das menschliche Gehirn mit seiner hochkomplexen Struktur. Entscheidend dabei ist, dass die Nervenzellen untereinander richtig vernetzt sind. Milliarden von Neuronen tauschen über Nervenfaserverbindungen, die Axone und Dendriten, Informationen aus. Fehlen diese Verbindungen oder sind sie aufgrund von Entwicklungsstörungen nur mangelhaft ausgebildet, kommt es zu gravierenden Beeinträchtigungen der intellektuellen oder physischen Fähigkeiten. Das Protein SIP1 wird vom gleichnamigen Gen kodiert und initiiert die Funktionen einer Reihe von weiteren Genen. Auf molekularer Ebene beeinflusst SIP1 die Bildung neuronaler Verbindungen. Den Forschern um Prof. Dr. Victor Tarabykin, Direktor des Institutes für Zell- und Neurobiologie, ist es nun gelungen, diesen direkten Zusammenhang im Tiermodell aufzuzeigen.

Zur Ausbildung von Nervenfaserverbindungen benötigt es Zellbausteine, die Mikrotubuli. Diese bilden ein intrazelluläres Gerüst, das Zellen ihre charakteristische Form gibt. Mikrotubuli sind außerdem Hilfsmoleküle für zahlreiche zelluläre Funktionen. In Neuronen aktiviert das Protein SIP1 die Bildung eines weiteren Proteins namens Ninein. Das Protein Ninein wiederum bindet Mikrotubuli innerhalb der Axone und stabilisiert diese Strukturen. „In Anwesenheit von Ninein kann das Mikrotubuli-Gerüst effektiv aufgebaut werden und damit den Nervenverbindungen Wachstum ermöglichen,“ erklärt Swathi Srivatsa, Erstautorin der Studie. „Fehlt jedoch SIP1, ist auch das Level von Ninein im Neuron reduziert. Dadurch werden Mikrotubuli destabilisiert und eher abgebaut, was zu einem verminderten Wachstum und geringerer Verzweigung des Axons führt.“ Letztendliche Folge: Wichtige neuronale Verbindungen werden nicht ausgebildet. Im schlimmsten Fall fehlen ganze axonale Leitungsbündel zwischen verschiedenen Regionen des Gehirns oder ist die Verbindung zwischen beiden Gehirnhälften, beziehungsweise zum Rückenmark, nicht angelegt. Diese aktuellen Erkenntnisse tragen zu einem besseren Verständnis der molekularen Prozesse bei, die an der Entwicklung des Gehirns und seinen Verbindungen beteiligt sind, ebenso bereiten sie den Weg für künftige Studien.

*Swathi Srivatsa, Srinivas Parthasarathy, Zoltán Molnár and Victor Tarabykin. Sip1 downstream effector ninein controls neocortical axonal growth, ipsilateral branching and microtubule growth and stability. Neuron, März 2015. doi: 10.1016/j.neuron.2015.01.018

Links

Öffnet externen Link im aktuellen FensterInstitute for Cell and Neurobiology
Öffnet externen Link im aktuellen FensterNeuroCure

Kontakt

Prof. Dr. Victor Tarabykin
Direktor des Instituts für Zell- und Neurobiologie
CharitéUniversitätsmedizin Berlin   
t: +49 30 450 528 418



Zurück zur Übersicht